

Deconvolution with Induced Charge: Outline of CalROI Scheme

Michael Mooney

MicroBooNE BNL Meeting February 25th, 2015

Introduction

- ◆ So far have implemented simple algorithm for including effects of induced charge from adjacent wires within deconvolution
 - Scheme is appropriate for implementation into **CalWire**: use all time bins (9600) and wires (3500/2500/2500)
 - Twice as slow as without induced charge
- ♦ Now let's look at an implementation suitable for using with
 CalROI should be much faster
 - Requires primitive tracking fairly complex problem!
 - Factorize into several smaller problems, attack one at a time:
 - Merging of ROI's into "ROI clusters"
 - Splitting of ROI clusters into smaller units consistent with track/shower candidates – "ROI subclusters"
 - For each ROI subcluster find appropriate FFT window across all associated wires "ROI boxes"

Deconvolution Review

New Deconvolution Scheme BROOKH

Including effects of induced charge from adjacent wires, things become more complicated:

$$M_{i}(t_{0}) = \int_{t} \left(R_{0}(t - t_{0}) \cdot S_{i}(t) + R_{1}(t - t_{0}) \cdot S_{i+1}(t) + \ldots \right) \cdot dt$$

$$M_{i}(\omega) = R_{0}(\omega) \cdot S_{i}(\omega) + R_{1}(\omega) \cdot S_{i+1}(\omega) + \ldots$$

Can represent in matrix form:

$$\begin{pmatrix} M_{1}(\omega) \\ M_{2}(\omega) \\ \dots \\ M_{n-1}(\omega) \\ M_{n}(\omega) \end{pmatrix} = \begin{pmatrix} R_{0}(\omega) & R_{1}(\omega) & \dots & R_{n-1}(\omega) & R_{n}(\omega) \\ R_{1}(\omega) & R_{0}(\omega) & \dots & R_{n-2}(\omega) & R_{n-1}(\omega) \\ \dots & \dots & \dots & \dots & \dots \\ R_{n-1}(\omega) & R_{n-2}(\omega) & \dots & R_{0}(\omega) & R_{1}(\omega) \\ R_{n}(\omega) & R_{n-1}(\omega) & \dots & R_{1}(\omega) & R_{0}(\omega) \end{pmatrix} \cdot \begin{pmatrix} S_{1}(\omega) \\ S_{2}(\omega) \\ \dots \\ S_{n-1}(\omega) \\ S_{n}(\omega) \end{pmatrix}$$

Inverting Response Matrix

- ♦ New deconvolution scheme implementation requires inversion of large response matrix – too slow?
- Can ignore wires that are far away to simplify matrix:

$$\begin{pmatrix} M_1(\omega) \\ M_2(\omega) \\ M_3(\omega) \\ M_4(\omega) \\ M_5(\omega) \\ M_6(\omega) \end{pmatrix} = \begin{pmatrix} R_0(\omega) & R_1(\omega) & 0 & 0 & 0 & 0 \\ R_1(\omega) & R_0(\omega) & R_1(\omega) & 0 & 0 & 0 \\ 0 & R_1(\omega) & R_0(\omega) & R_1(\omega) & 0 & 0 \\ 0 & 0 & R_1(\omega) & R_0(\omega) & R_1(\omega) & 0 \\ 0 & 0 & 0 & R_1(\omega) & R_0(\omega) & R_1(\omega) \\ 0 & 0 & 0 & R_1(\omega) & R_0(\omega) & R_1(\omega) \\ 0 & 0 & 0 & 0 & R_1(\omega) & R_0(\omega) \end{pmatrix} \cdot \begin{pmatrix} S_1(\omega) \\ S_2(\omega) \\ S_3(\omega) \\ S_4(\omega) \\ S_5(\omega) \\ S_6(\omega) \end{pmatrix}$$

- ◆ Can invert this **Toeplitz** matrix in **O(n·log(n))** time (FFT)
 - Requires secondary FFT over wire number (n wires) as compared to nominal FFT over time (m time bins)
 - Total deconvolution time: $O(m \cdot log(m) \cdot n + n \cdot log(n) \cdot m)$
 - Still expensive calculation: <u>reduce runtime with CalROI scheme</u>

Merging of ROI's

- ♦ Start with ROI's from nominal CalROI algorithm
- ♦ First step is to merge these into ROI clusters
 - Expand each ROI to span direct wire and N_{adj} adjacent wires
 - Merge these units into one cluster if they overlap
 - Scan entire wire plane over all time bins, merging left-to-right
 - If hit previously-merged ROI cluster, merge two ROI clusters into one
 - Relatively quick step since ROI's are sorted by wire number: O(n)

Example: N_{adj} = 2

Value of the second sec

Merging of μ+p Topology

Merging of μ+p Topology

Splitting of ROI Clusters

- ♦ Now we have a set of **ROI clusters** could just make a huge rectangular FFT box ("ROI box") around entire ROI cluster...
- ... but we can do better! Break into **ROI subclusters** (consistent with particle trajectories) to minimize runtime
 - Split based on number of ROI's within ROI cluster on a given wire
 - Introduces new parameter $N_{\rm sep}$ minimal separation (in number of time bins) between two ROI subclusters of a given ROI cluster

Splitting of µ+p Topology

Splitting of µ+p Topology

Forming of ROI Boxes

- ♦ Now we make minimal FFT window that surrounds all of the extended ROI units within our ROI subclusters **ROI boxes**
 - ROI clusters and ROI subclusters are associations, while ROI boxes are parallelograms in wire-time space (geometric)
 - Same time window for every wire in ROI box, necessary for FFT
- ♦ Done in two steps for every ROI subcluster:
 - Form **convex hull** around extended ROI units within subcluster
 - Use convex hull to form **parallelogram of least area** (ROI box)

Hulls BROOKHAVEN Convex Hulls BROOKHAVEN

μ+p Topology: ROI Boxes

Summary

- ◆ Previously looked at deconvolution including induced charge response from adjacent wires for **CalWire** case
 - Expect CalWire deconvolution to be roughly twice as slow
- ♦ Now looking at first ideas for induced charge deconvolution suitable for **CalROI** should be much faster
 - Factorized problem into three steps (to be done before FFT):
 - Merging of ROI's into "ROI clusters" O(n) runtime (for ROI's already sorted by wire number)
 - Splitting of ROI clusters into smaller units consistent with track/shower candidates, "ROI subclusters" – O(n) runtime
 - For each ROI subcluster find appropriate FFT window across all associated wires, "ROI boxes" O(n) runtime
- All steps seem reasonably quick, with straightforward implementation – main concerns are possible need for new filter, time-bin edge cases for ROI boxes, and tuning of N_{sep}

BACKUP SLIDES

Motivation

- ♦ Has recently been pointed out (by Leon) that our field model neglects induced charge from adjacent wires
- **◆ Important contribution** to raw signal waveform!
- ♦ Now accounted for in convolution what about <u>deconvolution</u>?

Fast Fourier Transform

$$c_{1} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \cdot e^{-2\pi i (\frac{1}{T})t} dt$$
...
$$c_{n} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \cdot e^{-2\pi i (\frac{n}{T})t} dt$$

FIGURE 12-2 The FFT decomposition An Minoint signal

The FFT decomposition. An N point signal is decomposed into N signals each containing a single point. Each stage uses an *interlace decomposition*, separating the even and odd numbered samples.

$$\begin{pmatrix} M_{11} & M_{12} & \dots & M_{1n-1} & M_{1n} \\ M_{21} & M_{22} & \dots & M_{2n-1} & M_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ M_{n-11} & M_{n-12} & \dots & \dots & \dots \\ M_{n1} & M_{n2} & \dots & \dots & M_{nn} \end{pmatrix} \cdot \begin{pmatrix} f_1 \\ f_2 \\ \dots \\ f_{n-1} \\ f_n \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \\ \dots \\ R_{n-1} \\ R_n \end{pmatrix} \cdot \begin{pmatrix} D_1 & D_2 & \dots & D_{n-1} & D_n \end{pmatrix} \cdot \begin{pmatrix} f_1 \\ f_2 \\ \dots \\ f_{n-1} \\ f_n \end{pmatrix}$$

Induced Charge Response

♦ Use toy MC to study deconvolution – responses, raw signals below

time (us)

time (0.1 us)

Impact on Deconvolution

- Compare raw signal of **60° track** on **first wire** with and without induced charge signal from adjacent wires (left)
- ♦ **Neglect** indirect charge in deconvolution? Mismatch between convolution and deconvolution kernels leads to problems (right)

Results of New Scheme

- ◆ Make use of new indirect charge deconvolution scheme within toy MC (invert response matrix with secondary FFT over wire number)
 - Seems to fix the problem (see right)
 - Including very basic flat filter for now
 - Possibly need **another filter** for secondary FFT investigating

CalWire vs. CalROI

- ♦ Studies with toy MC make use of CalWire-like setup: include all wires and all time bins in deconvolution
- ♦ New deconvolution scheme including induced charge roughly twice as slow compared to before
 - Before: $O(m \cdot log(m) \cdot n)$
 - Now: $O(m \cdot log(m) \cdot n + n \cdot log(n) \cdot m)$
 - For m time bins, n wires
- ♦ What about CalROI-like setup?
 - Estimate seems to be closer to 50% slower on average
 - Additional overhead: first need to find "ROI boxes" to coordinate FFT over wire number – primitive tracking!

